Class(ic) Scorecards

Selecting Characteristics and Attributes in Logistic Regression
Edinburgh Credit Scoring Conference - 25 August 2011

Gerard Scallan
gerard.scallan@scoreplus.com

Class(ic) Scorecards

Using the Statistics!

- What’s the Problem?
- Nested Dummy Variables
- Stepwise Method
- Selecting Characteristics
- Lessons Learned
Example: Age Characteristic
Typical Analysis Layout

CHARACTERISTIC: AGE

<table>
<thead>
<tr>
<th>Attribute</th>
<th>SAMPLE COUNTS</th>
<th>COLUMNS</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Goods</td>
<td>Bads</td>
<td>Total</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3608</td>
<td>1018</td>
<td>4645</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
<td>29</td>
<td>53</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>23</td>
<td>32</td>
<td>31</td>
<td>63</td>
</tr>
<tr>
<td>24</td>
<td>34</td>
<td>26</td>
<td>60</td>
</tr>
<tr>
<td>25</td>
<td>44</td>
<td>29</td>
<td>73</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>66+</td>
<td>18</td>
<td>1</td>
<td>19</td>
</tr>
</tbody>
</table>

Information Value: 0.373
Chi²: 334.61
DF: 47
p-level: 5.04938E-45

Goal of Classing → Maximise predictive power

WoE Graph: Show overall picture

WoE
\[\text{WoE} = \ln(\text{Odds}(\text{attr})) - \ln(\text{Odds}(\text{popn})) \]

IV
\[\text{IV} = \text{Avg}_i(\text{WoE}) - \text{Avg}_b(\text{WoE}) \]

Problem: Testing Wrong Hypothesis
Current Practice: Classing

Current Practice

- “Fine” breakdowns on each predictive characteristic
- Manual or Automatic Classing
 - Based on Information Value
 - or Chi² measure
- 1 dummy variable per class
- Select model variables using stepwise Logistic Regression

And what’s wrong with it

- One characteristic at a time
 - Anomalies in one characteristic often explained by another
- Lots of predictors → Lots of time
 - 700 chars x 3 mins. = 35 hours
- Variable selection in model at attribute level
 - “gap toothed” models
 - Age 18-21, Age 25-29 in model
 - Age 22-24 not in model
- Stepwise measures certainty
 - Not distance

Good technical solutions – but wrong problem

Solution 1: Continuous Variables

Risk improves continuously with Age

- Simpler Hypothesis
 - 1 parameter vs. 15+
- Data do not contradict the linear hypothesis
 - In most cases
- But sample sliced into many small categories
 - Combine categories
 - → More reliable tests
- Slope changes ~ age 30
 - Again ~ age 50?

Better Starting Point
Why Discretise?

Non-Linearities

 Tradition – 1960s

- Scores calculated by hand
- No pocket calculators
- Multiplication less reliable than addition
- Coefficients – 2 digit integers

- Slope changes ~ age 30
- Again ~ age 50?

Not quite discrete ...

No longer justified

Class(ic) Scorecards

Using the Statistics!

- What’s the Problem?
- Nested Dummy Variables
- Stepwise Method
- Selecting Characteristics
- Lessons Learned
Partition Variables

a.k.a. Nested Dummy Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age 18</th>
<th>Age 19</th>
<th>Age 20</th>
<th>Age 21</th>
<th>Age 22</th>
<th>Age 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>P18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P19</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P20</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Partition variable for each fine class
- P18 = intercept – will not enter model
- Score for 22 year old = P18 + P19 + P20 + P21
- Coefficient P22 = incremental change for Age 22 compared to Age 21
- Partition model gives same score to each individual as Attribute model
- Partition and Attribute variables = two bases for same linear space
- Monotone increasing ↔ Partition Coefficients > 0

Different coding – Same model

Variance of Coefficients and Significance Testing

| No. | Characteristic | Variable | Estimate | Std. Error | z-value | P>|z| | Significance | [95% Conf. Interval] |
|-----|----------------|----------|----------|------------|---------|--------|---------------|------------------|
| 0 | (Intercept) | 0 | 0.54343 | 0.17772 | 3.058 | 0.00223 | *** | 0.19510 0.89176 |
| 1 | TmBooks | 2y6m+ | 0.82928 | 0.09972 | 8.316 | < 2e-16 | *** | 0.63383 1.02473 |
| 2 | TmBooks | 7y1m+ | 0.68709 | 0.12361 | 5.558 | 2.72E-08 | *** | 0.44481 0.92937 |
| 3 | TmBooks | 14y1m+ | 0.56779 | 0.1673 | 3.394 | 0.000689 | *** | 0.23988 0.89570 |
| 4 | DaysXS | Any | -0.68069 | 0.13247 | -5.138 | 2.77E-07 | *** | -0.94033 -0.42105 |
| 5 | DaysXS | 11+ | -0.45509 | 0.18657 | -2.439 | 0.01472 | * | -0.82077 -0.08941 |
| 6 | DaysXS | 16+ | -0.08821 | 0.17508 | -0.504 | 0.614396 | | -0.43137 0.25495 |
| 7 | DaysXS | 61+ | -0.45783 | 0.11057 | -4.141 | 3.47E-05 | *** | -0.67455 -0.24111 |
| 8 | Bounce | 1m+ | 0.39119 | 0.13214 | 2.96 | 0.003072 | ** | 0.13220 0.65018 |
| 9 | Bounce | 41m+ | -0.06494 | 0.28124 | -0.231 | 0.81739 | - | -0.61617 0.48829 |
| 10 | Bounce | Never | 1.02127 | 0.28125 | 3.631 | 0.000282 | ** | 0.47002 1.57252 |
| 11 | AutoCredit | Any | 0.41368 | 0.12795 | 3.233 | 0.001225 | ** | 0.16290 0.66446 |
| 12 | AutoCredit | 4000+ | 0.44995 | 0.11074 | 4.065 | 4.84E-05 | *** | 0.23290 0.66700 |

- Maximum Likelihood Estimates
- Std. Error from Covariance Matrix of Estimates
- Z-value = Estimate/Std. Error
- OR Wald Statistic = Z²
Z-test and Wald Chi² Test: Is this variable necessary?

Z-test
- Z-value = Estimate/Std. Error
- If “true” value of Coefficient = 0
 - Null Hypothesis
 - then sample value of Z has Normal distribution
 - Mean = 0, Variance = 1
 - (From theory of Max Likelihood)
- If Null Hypothesis is true, then unlikely to get this big |z| OR
- If |z| is “large”, data are not consistent with NH

Wald Chi² Test
- Z² = Estimate²/Variance
- Under Null Hypothesis Z² has Chi² Distribution w/ 1 DF
 - Square of N(0,1)
- Same test!
 - Test at 10%, 5%, 1%, .1%
 - *** p < 0.1%
 - ** p < 1%
 - * p < 5%
 - . p < 10%

Large sample approximation – easy to apply

Hypothesis Tests with Partition Variables

Attribute Dummy Variables
- “Reference Attribute” on every characteristic
 - Receives 0 score
 - Avoids linear indeterminacy
 - Usually last attribute
 - E.g. Age 60+
- Coefficient = 0
 - Risk same as Reference Attribute
- E.g. Risk on Age 22-25 = Risk on Age 60+
- Useless hypothesis

Ignore statistics

Partition Dummy Variables
- Coefficient = 0 ↔ Risk same as neighbour to left
- E.g. No difference in risk between Age 22-25 and Age 20-21
- What are key turning points in risk pattern?

Key information
Automated classing
Provisional Solution

Algorithm

◆ Partition Vars. for “fine” classes
 ◆ Must be ordered “sensibly”
 ◆ Natural order or WoE
 ◆ Possibly 20-30 variables/characteristic
 ◆ All characteristics in model
◆ Candidates in stepwise Logistic
◆ Stepwise algorithm identifies “significant” breakpoints
 ◆ Partition variable enters iff “significant” difference between neighboring attributes

Advantages

◆ Less work for analyst!
◆ Classing adapts to sample size
 ◆ Small sample → Coarser
 ◆ Large sample → Finer
◆ Accounts for interactions between characteristics
 ◆ Fewer classes/characteristic
 ◆ Multivariate approach
◆ Equivalent to systematic use of Marginal Chi²
 ◆ But approximations are better!
◆ Avoids gap-toothed scorecards

Get minimal classing needed for predictive structure

Continuous Variables
Piecewise Linear

Idea

◆ Analogous idea for continuous predictors
◆ Family of spline variables
◆ E.g. Age
 ◆ (Age – 20)⁺ = max(0, Age-20)
 ◆ (Age – 22)⁺ = max(0, Age-22)
 ◆ (Age – 24)⁺ = max(0, Age-24)
 ◆ … etc.
◆ Candidates in stepwise Logistic
◆ Terms entering correspond to significant changes in slope
◆ a.k.a. MARS
 ◆ Multivariate Adaptive Regression Splines

Example

Score = .2 x Age
-.06 x (Age – 22)⁺
-.04 x (Age – 30)⁺
-.03 x (Age – 38)⁺
-.02 x (Age – 46)⁺
Class(ic) Scorecards

Using the Statistics!

✓ What’s the Problem?
✓ Nested Dummy Variables
→ Stepwise Method
✓ Selecting Characteristics
✓ Lessons Learned

Stepwise Approach

3 variants

◆ Forward Selection
 ◆ Start with null model
 ◆ Add variables
 ◆ Until no further variable adds significant predictive power

◆ Backward Elimination
 ◆ Start with all variables
 ◆ Drop variable which makes least contribution to likelihood
 ◆ Until no further variable can be dropped without significant loss of predictive power

◆ Bidirectional
 ◆ Start with null model
 ◆ Add variables
 ◆ At each step, check to see if variables can be dropped
 ◆ Then check to see if any variable can be added
 ◆ Until no variable to be dropped AND
 ◆ No variable to be added

Computation: Forward < Backward < Bidirectional
What’s wrong with Stepwise?

“If this method had just been proposed ... it would most likely be rejected because it violates every principle of statistical estimation and hypothesis testing”
– Harrell 2001 “Regression Modeling Strategies”, p. 56

- Parameters estimates too large
 - Selects “overestimated” coefficients
- Overestimates precision
 - Because underestimates variance
- Collinearity makes variable selection arbitrary

“It allows us not to think about the problem”

Stepwise Logistic on Random Numbers
Simulated Example

- Similar to Flom & Cassell (2007)
- 1000 Goods
- Bads from 100 to 1000
- 100 candidate variables
- All “white noise”
 - Random from Normal Distribution
 - Real predictive power = 0
- 100 replications for each sample size
- Entry/Exit criterion: p < 0.1

- Results on estimation sample
- Won’t validate (we hope!)
- All models have Deviance statistics w/ p-level < 0.1%
- 2/3 of variables significant at 5% p-level

Adds noise to model
Class(ic) Scorecards

Using the Statistics!

- What’s the Problem?
- Nested Dummy Variables
- Stepwise Method
- Selecting Characteristics
- Lessons Learned

Goal: Minimal Sufficient Model

- Bring in enough variables to explain the variation in outcome across the sample
- But no more …
- Tell a (sensible) story

End point: predictive power of sample is exhausted
Marginal Information and Delta Scores

- Weight of Evidence (WoE) = \log (\text{Attribute Odds}) – \log (\text{Population Odds})
- One-dimensional score coefficients
- Delta Score = Observed WoE – Expected WoE
- Approximation to score coeffts needed to line up expected with observed
- Marginal Information Value = Avg\text{Good}(\text{Delta Score}) – Avg\text{Bad}(\text{Delta Score})
- Similar to Kullback-Liebler Information Value
- Increased spread between average score of goods and bads
- … if this characteristic brought into model

Debit Turnover

<table>
<thead>
<tr>
<th></th>
<th>OBSERVED</th>
<th></th>
<th>EXPECTED</th>
<th></th>
<th>(\Delta)-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods</td>
<td>436</td>
<td>174</td>
<td>-1.17</td>
<td>487.7</td>
<td>-0.70</td>
</tr>
<tr>
<td>Goods</td>
<td>178</td>
<td>38</td>
<td>-0.54</td>
<td>184.6</td>
<td>-0.32</td>
</tr>
<tr>
<td>Goods</td>
<td>84</td>
<td>17</td>
<td>-0.49</td>
<td>86.2</td>
<td>-0.33</td>
</tr>
<tr>
<td>Goods</td>
<td>263</td>
<td>46</td>
<td>-0.34</td>
<td>263.1</td>
<td>-0.34</td>
</tr>
<tr>
<td>Goods</td>
<td>6240</td>
<td>618</td>
<td>0.22</td>
<td>6179.4</td>
<td>0.12</td>
</tr>
<tr>
<td>Goods</td>
<td>7201</td>
<td>893</td>
<td>0.00</td>
<td>7201</td>
<td>0.00</td>
</tr>
<tr>
<td>Bads</td>
<td>192</td>
<td>38</td>
<td>-0.54</td>
<td>184.6</td>
<td>-0.32</td>
</tr>
<tr>
<td>Bads</td>
<td>178</td>
<td>38</td>
<td>-0.54</td>
<td>184.6</td>
<td>-0.32</td>
</tr>
<tr>
<td>Bads</td>
<td>84</td>
<td>17</td>
<td>-0.49</td>
<td>86.2</td>
<td>-0.33</td>
</tr>
<tr>
<td>Bads</td>
<td>263</td>
<td>46</td>
<td>-0.34</td>
<td>263.1</td>
<td>-0.34</td>
</tr>
<tr>
<td>Bads</td>
<td>6240</td>
<td>618</td>
<td>0.22</td>
<td>6179.4</td>
<td>0.12</td>
</tr>
<tr>
<td>Bads</td>
<td>7201</td>
<td>893</td>
<td>0.00</td>
<td>7201</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7201</td>
<td>893</td>
<td>0.00</td>
<td>7201</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Chi² = 33.06
D.F. = 4
p-value = 0.00012%

Selecting Scorecard Characteristics

- Rank characteristics by Marginal IV
- Characteristic with maximum MIV enters model ...
- … i.e. partition variables become candidates for entry to model

Scores

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DaysXsL6m</th>
<th>ToB</th>
<th>SinceDish</th>
<th>AutoCr</th>
<th>CurDaysXs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CurBal</td>
<td>0.032</td>
<td>0.19</td>
<td>0.017</td>
<td>0.013</td>
<td>0.010</td>
</tr>
<tr>
<td>CurCTO</td>
<td>0.185</td>
<td>0.12</td>
<td>0.086</td>
<td>0.089</td>
<td>0.007</td>
</tr>
<tr>
<td>CurDaysXs</td>
<td>0.616</td>
<td>0.12</td>
<td>0.110</td>
<td>0.093</td>
<td>0.060</td>
</tr>
<tr>
<td>CurDTO</td>
<td>0.215</td>
<td>0.17</td>
<td>0.087</td>
<td>0.093</td>
<td>0.026</td>
</tr>
<tr>
<td>CurValXs</td>
<td>0.515</td>
<td>0.12</td>
<td>0.110</td>
<td>0.093</td>
<td>0.060</td>
</tr>
<tr>
<td>ToB</td>
<td>0.692</td>
<td>0.526</td>
<td>0.010</td>
<td>0.026</td>
<td>0.025</td>
</tr>
<tr>
<td>MthsInact</td>
<td>0.012</td>
<td>0.005</td>
<td>0.001</td>
<td>0.004</td>
<td>-0.002</td>
</tr>
<tr>
<td>MthsNoCTO</td>
<td>0.077</td>
<td>0.066</td>
<td>0.043</td>
<td>0.045</td>
<td>0.001</td>
</tr>
<tr>
<td>NetTO</td>
<td>0.074</td>
<td>0.028</td>
<td>0.007</td>
<td>0.010</td>
<td>0.002</td>
</tr>
<tr>
<td>DaysDbL3m</td>
<td>0.055</td>
<td>0.008</td>
<td>0.013</td>
<td>0.008</td>
<td>0.005</td>
</tr>
<tr>
<td>DaysXsL6m</td>
<td>0.856</td>
<td>0.000</td>
<td>0.008</td>
<td>0.011</td>
<td>0.015</td>
</tr>
<tr>
<td>CurMxBal</td>
<td>0.033</td>
<td>0.015</td>
<td>0.018</td>
<td>0.013</td>
<td>0.005</td>
</tr>
<tr>
<td>DisHL3m</td>
<td>0.291</td>
<td>0.090</td>
<td>0.084</td>
<td>-0.006</td>
<td>-0.008</td>
</tr>
<tr>
<td>SinceDish</td>
<td>0.810</td>
<td>0.397</td>
<td>0.299</td>
<td>0.057</td>
<td>0.050</td>
</tr>
<tr>
<td>InterCTO</td>
<td>0.017</td>
<td>0.004</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.001</td>
</tr>
<tr>
<td>InterDTO</td>
<td>0.003</td>
<td>0.001</td>
<td>0.000</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td>AutoCr</td>
<td>0.209</td>
<td>0.143</td>
<td>0.108</td>
<td>0.106</td>
<td>0.005</td>
</tr>
<tr>
<td>ValDishL6m</td>
<td>0.468</td>
<td>0.145</td>
<td>0.137</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
</tbody>
</table>
Marginal IV and Collinearity

- As each variable enters MIV on remaining characteristics reduces
- Reduction measures collinearity
 - “overlap” in predictive power
 - Improperly called “correlation”
- Understand relationships between characteristics through MIV decay
- Frequently identify “families”
 - Or “Factors”
 - If one member enters model,
 - MIV drops severely on other members
- Choice of member is arbitrary

Zero Marginal Information = Sufficient Statistic

Automated Classing with Marginal IV
Customer Age Example

- Compute Marginal Info Value for each partition
- Select partition with max. MIV
- Check Significance \rightarrow Deviance Test
- Rebuild model w/ new variable
- Re-estimate MIVs
- Continue until no significant MIV left
- All characteristics processed simultaneously
Automated Classing with Marginal IV

Customer Age Example - Completion

- Continue until all MIVs < .020
- 5 variables – 6 classes
- -ve MIVs → Wrong direction
- In real life, do all chars simultaneously

End of process: “Zero” Marginal Information

Actual vs. Fitted WoE

- “Few” significant differences between fitted and actual
- Differences in neighbouring groups all significant at 95%
Triple Test
Bottom Line

- Marginal Information Value = Importance
 - Distance measure
 - Rule of Thumb: -.020 < MIV > +.020
 - Negative value indicates over-fitting
 - Re-examine history of MIV to drop variable from model
- Marginal Chi² = Reliability
 - Measure of certainty
 - Thousands of tests - beware of false positives
 - Sensitive to classing used for analysis
 - More robust to use Stepwise approach for classing
- Business sense = Coherence
 - Does characteristic tell a believable story?
 - Does the model make sense

Model complete when no further variable satisfies these 3 criteria

Class(ic) Scorecards
Using the Statistics!

- What’s the Problem?
- Nested Dummy Variables
- Stepwise Method
- Selecting Characteristics
- Lessons Learned
Conclusions

- Standard statistical tools can be used better
 - Corollary: We don’t need lots of special-purpose analysis software
- No statistical tool can take over the burden of sense-checking models

Outstanding Issues

Topics for Research

Marginal Analysis
- Confidence intervals on
 - Delta scores (easy)
 - Marginal Information values (hard)
- Re-design characteristic analysis to focus on partition variables
- Characteristic Analysis for Continuous Characteristics
 - Splines
 - Cf. Ross Gayler

Scorecard Estimation
- “Stepwise” type algorithm using Marginal IV
 - rather than Deviance measures
 - but also using significance checks
- Logistic Regression with constraints
 - Monotonicity ↔ Sign constraint
 - Would eliminate much over-fitting through stepwise

MORE POWER FROM STANDARD TOOLS
USE THE STATISTICS!
References

- Gerard SCALLAN (2011) “Building Better Scorecards” (Scoreplus, Course Notes, 2011 edition – Sections 5, 7, 8; Sections 8, 11 in older editions)